
Review of Probability

It may be helpful to download this cheatsheet and edit for your own use  
http://github.com/wzchen/probability_cheatsheet 
and can review concepts in Blitzstein & Hwang

Today, we will review some concepts in probability, establish a 
common terminology, and go over basic examples in statistical 
inference using maximum likelihood estimations and Bayesian 
inference.

Definition: Sample Space & Event
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Blitzstein & Hwang

A sample space is the set of all possible outcomes of the 
experiment. 
An event A is a subset of the sample space. 
We will say that A occurred if the actual outcome is in A. 
Graphically, a sample space is represented in Figure 1.1. as 
pebbles. Events A and B are subsets of the sample space.
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Translate from English to Set Language
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a)

Set theory notation is very useful for manipulating probabilistic 
statements. To establish a common terminology, let's match 
the english expressions on the left to the set notation on the 
right.

Naive Definition of Probability
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A naive definition of probability can be done in terms of the 
size (area, mass) of events. P(A) = |A| / |S| = # of outcomes in A 
/ total number of outcomes in S



Exercise: what's the probability of A?
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What's the probability of A?

Axiomatic Definition of Probability
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For a more general definition of probability, we need a 
probability space, which consists of a sample space, and a 
probability function P. The P function assigns a number 
between 0 and 1 to events and must comply with the 
following rules: the probability of the empty set is 0, the 
probability of the sample space is 1, and the union of disjoint 
events is equal to the sum of the probability of each event.

Definition: Conditional Probability
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Blitzstein & Hwang

P(A |B) =
P(A ∩ B)

P(B)

Conditional probability of an even A given B is defined as the 
ratio of the probability of the intersection between A and B, 
divided by the probability of B.

Intuition Conditional Probability
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The intuition behind the conditional probability is illustrated in 
Figure 2.1. The rectangle with 9 pebbles is the sample space. 
Event A is shown as a subset of S. When we condition on B, 
we consider that B has occurred. Thus we need to exclude all 
the pebbles outside of B, which is accomplished by taking the 
intersection with B. The conditional probability of B|B has to 
be one. This is accomplished by dividing by P(B).



Exercise: Derive Bayes' Rule
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P(A |B) =
P(B |A)P(A)

P(B)

hint: start with  P(A ∩ B) = P(B ∩ A) and use the definition of conditional probability

P(A |B) =
P(A ∩ B)

P(B)

Derive the Bayes' rule.  

This seemingly simple consequence of the definition of 
conditional distribution is the basis of the powerful Bayesian 
inference.

Definition: Independence of Events
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Two events are said to be independent if the probability of 
their intersection (joint probability) is the product of their 
(marginal) probabilities. One can show that this definition is 
equivalent to the more intuitive one: that the probability of A 
does not change knowing that B has occurred. Similarly, that 
the probability of B does not depend on knowing that A has 
occurred. 

Why do we require P(A) and P(B) different from 0 for the last 
two conditions and not for the first? 

Exercise: prove that the three definitions are equivalent.

Law of Total Probability
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The law of total probability states that given a partition of the 
sample space, the probability of an event B can be calculated 
as the sum of conditional probabilities of B within each slice in 
the partition, weighted by the probability of the slice.  

Can you think of reasons why this law could this be useful? 

If we partition the sample space wisely, conditional 
probabilities can be much easier to calculate the the total 
marginal probability. Intuitively, this can happen because 
conditional probabilities have additional information. 

Law of Total Probability (Marginalization)
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P(B) = ∑
i

P(B ∩ Ai)

P(B) = P(B ∩ A1) + P(B ∩ A2) + P(B ∩ A3) + P(B ∩ A4) + P(B ∩ A5) + P(B ∩ A6)
Blitzstein & Hwang

It is quite intuitive that the probability of B can be calculated 
directly or as the sum of the probabilities of the intersection of 
B with disjoint slices of the sample space. This is sometimes 
known as marginalization. 



Law of Total Probability
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P(B) = ∑
i

P(B ∩ Ai) = ∑
i

P(B |Ai)P(Ai)

P(B) = P(B ∩ A1) + P(B ∩ A2) + P(B ∩ A3) + P(B ∩ A4) + P(B ∩ A5) + P(B ∩ A6)

P(B) = P(B |A1)P(A1) + P(B |A2)P(A2) + P(B |A3)P(A3) + P(B |A4)P(A4) + P(B |A5)P(A5) + P(B |A6)P(A6)

The law of total probability can be shown by simple 
application of the definition of conditional probability. 

If you haven't seen an application of this law in practice, it may 
not look very promising. However, it happens that 
computations can be simplified a lot if we choose the partition 
judiciously.

Definition: Random Variable
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Random variables map outcomes in the sample space into the 
real line. In this example, each of the 6 elements in the sample 
space map into the real line. 

Are These Random Variables? Explain Why Y/N
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Here each rectangle is a sample space with the numbers in 
each pebble representing the value of the random variable. 
Does the rectangle on the left represent a random variable? 
How about the one on the right? Explain why.

Independence of Random Variables
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Random variables X and Y are said to be independent if the 
joint probability of X being no greater than x and Y being no 
greater than y is the product of their marginal probabilities. In 
the discrete case, this is equivalent to the probability that X=x 
and Y=y is the product of their marginal probabilities.



Properties of Random Variables

- Linearity of expectation

- A function of a r.v. is also a r.v.

- Covariance of independent r.v. = 0
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Expectation: E[X] = ∑
x

xP(X = x)

Variance  Var[X] = E[(X − μx)2]  where μx = E[X]

Covariance  Cov[X, Y] = E[(X − μx)(Y − μy)]

The expected value (also called mean) of a discrete random 
variable is the sum over all values x that the r.v. can take, 
weighted by the probability of each x. The variance is the 
expected value of the squared difference between the r.v. and 
its mean. 
Linearity of the expectation: E[aX + bY] = aE[X] + bE[Y] 
if X is a r.v., a real valued function g(X) is also a r.v. 
if X and Y are independent, then Cov(X,Y) = 0. How about the 
converse, does Cov(X,Y)=0 implies that X and Y are 
independent? If not, when would the converse hold?

Expectation of a Function of a Random Variable
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E[g(X)] = ∑
x

g(x)P(X = x) ?

E[g(X)] = g(E[X]) ?

recall expectation: E[X] = ∑
x

xP(X = x)

Are these equalities true in general? If not, when do they 
hold?

Discrete vs. Continuous Distributions
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For convenience, we have used the definitions for discrete r.v. 
For continuous r.v., we need to use integrals instead of sums 
and instead of the probability mass function, we need to use 
the probability density function.

Examples of Common 
Distributions



Bernoulli Random Variable
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https://en.wikipedia.org/wiki/Bernoulli_distribution

Can you think of an experiment that results in a bernoulli r.v?

Binomial Random Variable
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sum of n independent Bernoulli r.v.

https://en.wikipedia.org/wiki/Binomial_distribution

describe an experiment that would yield a binomial random 
variable

Normal Random Variable
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https://en.wikipedia.org/wiki/Normal_distribution

Normal r.v. is the most commonly used continuous r.v.  

Processes that are an accumulation of multiple small effects 
are modeled well as normal r.v.. Can you think of why? 

Beta Distribution
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https://en.wikipedia.org/wiki/Beta_distribution

∫
1

0
θα−1(1 − θ)β−1dθ = B(α, β)

=
Γ(α)Γ(β)
Γ(α + β)

https://en.wikipedia.org/wiki/Gamma_function

Since the integral of the pdf of any continuous random 
variable over its support has = 1. This means that the integral 
in the gray box has to be B(α,β). This knowledge will come in 
handy later when we try to find the P(data) for Bayesian 
inference.



Indicator Function Random Variable
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IA = 0 if Ac occurs
IA = 1 if A occurs

P(A) = E[IA]
Fundamental Bridge between Probability & Expectation

Blitzstein & Hwang
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The indicator function is a deceivingly simple r.v. that can 
make calculations easier. The probability of an event can be 
calculated as the expected value of the indicator function. 
Blitzstein and Hwang thought that this was so important that 
they called it the "Fundamental bridge between probability 
and expectation". 


