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we want posterior distribution of θ :

P(data) marginal probability of data

The goal is to learn the parameter  θ  
given the observed data

P(data |θ) likelihood, our model of the data
P(θ) prior

We typically have:

P(θ |data)

In Bayesian Inference, we want to learn the distribution of the 
parameters θ of the model given the observed data. θ can be 
a scalar or a vector with many parameters values. We 
accomplish this by calculating the posterior distribution of θ, 
P(θ|data). After we decide on how to model the data, we write 
down the likelihood, P(data|θ). The prior P(θ) quantifies our 
knowledge about θ before observing any data. Using the 
Bayes rule, we can calculate the posterior distribution of the 
parameter θ using the likelihood, the prior and the marginal 
probability of the data P(data).

Exercise: "Invert" the Probability Statement 
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P(data |θ) (likelihood)

P(θ |data) (posterior)

P(data |θ)

P(θ |data) P(θ)

P(data)

hint Bayes' Rule:  P(A |B) =
P(B |A)P(A)

P(B)

Now, you are going to "invert" the probability statement, in 
other words, we want to get P(θ|data) using P(data|θ), P(θ), 
and P(data). 

Example: I get a test for a disease, say HIV and the result is 
positive. The data here is that my test is positive. The 
parameter is my actual disease status, which could be I have 
the disease or I am healthy. What would I be more interested 
in? P(positive| diseased) or P(diseased| positive)? In medicine, 
P(positive|diseased) is also called sensitivity of the test and 
P(diseased|positive) is the positive predictive value. In our 
context, P(positive|diseased) is the likelihood and P(diseased|

Bayesian Inference
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P(θ |data) ∝ P(data |θ) ⋅ P(θ)

Bayesian Data Analysis 3rd Ed - Gelman, Carlin, Stern, Dunson, Vehtari, Rubin

The expression at the top is the key relationship used for 
Bayesian inference. To get the posterior distribution, we use 
the product of the likelihood and the prior. The α symbol 
means that the LHS is proportional to the RHS.  

Why do you think we drop the proportionality constant 1/
P(data)? 

The marginal probability of the data P(data) can be 
computationally expensive to calculate. Since P(data) does not 
depend on θ there are several tricks to get the posterior 
without explicitly calculating it. Sometimes, when the RHS has 



a known distribution function, then the proportionality 
constant are already known or tabulated. In more complex 
cases, MCMC methods are used to obtain a sample of the 
posterior distribution. 

When θ is a single parameter, plotting the RHS can give us a 
good sense of the posterior distribution. The figure shows the 
posterior density for the probability of success in n = 3, 20, 
100, and 1000 trials, with 3, 12, 60, and 600 successes. As the 
number of trials goes up, more information about the 
parameter θ is collected, leading to the probability mass 
becoming more concentrated nearby 0.6, the true parameter.

Unnormalized Posterior with Simulated Binomial r.v.
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P(θ |data) ∝ P(data |θ) ⋅ P(θ) ∝ θ10−4(1 − θ)4

Bayesian Data Analysis 3rd Ed - Gelman, Carlin, Stern, Dunson, Vehtari, Rubin

https://hakyimlab.github.io/hgen471/L1-binomial-parameter-posterior.html

A simulation of n=10 tosses with θ = 0.6  yielded 4 successes. 
Assuming uniform prior on θ, P(θ)=1, the unnormalized 

posterior is 

Here we simulate a binomial random variable as the number of 
success in n = 10 trials. In R this is accomplished with the 
command y = rbinom(1, 10, theta=0.6). In this particular 
simulation, we got 4 successes. The figure shows the 
unnormalized posterior (that means that all factors that do not 
depend on θ have been dropped) density of θ assuming a flat 
prior on θ.  

What would be the mle estimate of theta? Does this posterior 
look consistent with the true parameter, which we know here 
because we simulated the data? 

Try out other simulations to get a sense of the variability of the 
mle using the code here https://github.com/hakyimlab/
hgen471/blob/master/analysis/L1-binomial-parameter-
posterior.Rmd

Example: Proportion of Female Birth
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P(θ |data)

P(data)
try not to have to deal with the marginal prob of data

Calculate the posterior distribution of the proportion of female 
birth given the observed data

241,945 girls and 251,527 boys were born in Paris from 1745 
to 1770.

P(data |θ)

P(θ)

we have 241,945 successes from 493,472 trials

write down the likelihood

choose the prior

Bayesian Data Analysis 3rd Ed - Gelman, Carlin, Stern, Dunson, Vehtari, Rubin

Laplace rediscovered Bayes rule to answer the question 
whether there were more boys than girls born during the 
second half of the 18th century. Let's calculate the posterior 
P(θ|data). Our data is that there were 241,945 girls out of 
493,472 births. We can model the number of girls as the sum 
of 493,472 independent trials with 241,945 successes.  

Which of the known distributions should we use? 

To indicate that we don't have any prior knowledge of the 
probability of girl, let's use a uniform prior for θ.



Exercise: Proportion of Female Birth
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P(data |θ)
P(θ)

we have 241,945 successes from 493,472 trials

write down the likelihood

choose the uniform prior

calculate the posterior P(θ |data)

hint: binomial pmf = (n
y) θy(1 − θ)n−yhint: number of girls born can be modeled as a binomial r.v.

see posterior plotted in https://hakyimlab.github.io/hgen471/L1-female-birth-rate.html


