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LD Score Regression
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Remember LD score regression allows us to
decompose inflation into polygenic and
confounder contributions. By running a
regression of the chi2 statistics on Id scores, we
can estimate heritability, effect of confounders
(including population stratification and
relatedness). By regressing the product of the
zscores of two traits, one can also estimate the
genetic correlation. Later, you will also see that
by partitioning the Id scores into different
functional categories, one can also partition the
heritability of traits by functional category.

GWAS: Simple Linear Regression

In a GWAS we find one SNP at a time
Y=u+a-age+p -X+e¢

Find u, a, B that minimizes squared error.
These are fixed parameters.
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Last class we saw that we can correct for
population stratification by adding a random
effects term to the linear model to capture the
population structure and family structure. This
was implemented in EMMAX. Today we will see
how that random effect (u) is connected to the
sum of the effects of all the SNPs in the
genome. A typical GWAS may fit the model
shown in this slide, with a mean p, some
covariates such as age, and the effect of a SNP
Xy with effect size By and an error term that will
"absorb" what the model is not able to capture.
All parameters can be estimated by maximizing
the likelihood, which is equivalent to minimizing
the square difference between the phenotype
and the regression function (if error term is



assumed to be normally distributed). We say
that we minimize the L2 norm of the error term.

Minimizing the L2 norm Here we spell out what we mean by L2 norm.
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Mixed Effects Modeling

Can we fit all SNPs at the same time?

Y =p+aage+ B1.X1 + B2Xo + -+ + 51,000,000X1,000,000

Why can’t we estimate betas by least squares?
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Mixed Effects Modeling

Can we fit all SNPs at the same time?

Y = p+aage+ 51Xy + B2 X2+ -+ + B1,000,000X1,000,000

Why can't we estimate betas by least squares?

Too many parameters and too

few observations

Solution
Assume 6 ~ N(O, 0’%) and estimate just the O%

It is reasonable to think that we could fit all the
SNPs at the same time. The problem we
encounter when we try to do that is that there
are too many parameters and not enough data
points. We typically have millions of SNPs and
only thousands of individuals. Even with sample
sizes growing the estimates would be overfitting
the data and not work very well in new
individuals. So instead of fitting millions of Bs as
fixed effects, we can consider them to be
random and estimate their distribution, i.e.
consider

B to be normally distributed with mean 0 and
variance 02 and only estimate the variance
parameter 2.

Mixed Effects Modeling

Y = fixed effects + random effects -+ noise

— fixed effects + Zﬁka + €

s are random

B ~ N(0,03)

** this is one form of Regularization, more on this later
5|




Connection to EMMAX Used To Account for Population Structure?

Y = fixed effects + ZBka + €

Recall EMMAX
- Y= Xest Btest + U + €
- u~N(0,02K)

Y=Xst frest + QX Xibh  + ¢
k

u
|

Here we can see the connection between the
EMMAX' random effect u and the sum of the
effects of all the snps. To demonstrate that
Emmax random effect is the same as the sum of
the effects of all the snps, all we need to do is to
shown that they have the same covariance
matrix, also equal to the genetic relatedness
matrix.

Calculate K

Kernel
Similarity matrix
Genetic Relatedness Matrix

Leave One Chromosome Out

Y=Xest Prest + Q2 Xib  + ¢
k

u

Initially, EMMAX was calculating K using all SNPs

Issue: deflation due to proximal contamination
Solution: LOCO, leave one chromosome out

The equivalence between the random effect u
and the sum of the effects of all the snps
provide an explanation to the deflation seen in
EMMAX results.

The effect of a snp is being explained by both
the fixed effects and the random effect, so the
power to detect the effect is diluted and
absorbed by the random effect component.
LOCO (leave one chromosome out) is an easy
solution to this problem, for each test SNP, only
use the variants outside of the chromosome
where theist SNP is located, ensuring that there
will be no LD between SNPs that make up u and
the test SNP.



Biobank-Scale Ready LMM Methods

- EMMAX

- original mixed effects modeling proposal to correct for population and family
structure

- Y =Xtest Ptest + U + €
- u~N(0,02-K)

- BOLT-LMM (Loh et al, 2015, 2018)
- Y =Xtest Btest + U + €
- U~ N(0,02%marK) + (1 - 71) - N(0,02iarge K)

- fastGWA (Jiang et al 2019)
- Y =Xtest " Btest +PC - Bpc+ u + €
- u~ N(0,02:K), K only kinship by rounding off elements < 0.05
Kang et al (2010). Variance component model to account for sample structure in genome-wide association studies. Nature Genetics.

Loh et al (2018). Mixed-model association for biobank-scale datasets. Nature Genefics.

Jiang et al (2019). A resource-efficient tool for mixed model association analysis of large-scale data. Nature Genetics.

The main reason mixed effects models were not
adopted more broadly is the computational
cost. For example, most publications using the
UK Biobank data use only unrelated individuals
which means going from a sample size of 450K
down to ~330k.

To address this problem, several biobank-scale
ready methods that reduce the computational
burden have been published. Two prominent
ones are BOLT-LMM and fastGWA.

BOLT LMM Power Gain in UK Biobank

Power (no. of GWAS loci)
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increased sample size + adjustment of polygenic component

Loh et al (2018). Mixed-model association for biobank-scale datasets. Nature Genetics.

BOLT-LMM fits the SNP of interest, Xtest, with the
random effects term computed LOCO.

To gain computational speed, BOLT-LMM fits the
model without the test SNP, i.e.the null model
for the test SNP. This is done once per each
chromosome.

Then the residual Y - u to test whether Xiest is
associated with the Y.

The authors claim that by doing this they not
only gain by sample size increase due to
including the related individual, but also by
adjusting for the polygenic component, which is
captured by the u. In this figure boltimm is
shown to increase the number of discoveries by
more than 80%.



fastGWA's Simulation Show Inflation of BOLT-LMM
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Jiang et al (2019). A resource-efficient tool for mixed model association analysis of large-scale data. Nature Genetics.

fastGWA is another method capable of handling
biobank scale GWAS with complex population
and relatedness structure.

fastGWA adjusts for population structure using
the more traditional approach of using genetic
principal components as covariates. A random
effect is used to adjust for relatedness by using a
"rounded" version of the relatedness matrix,
where all values below 0.05 are replaced by O,
yielding the kinship matrix.

They suggest that BOLT-LMM's increased
discoveries may be due to inflation rather that
its ability to leverage polygenicity.

fastGWA is FAST and Memory Efficient

Table 1| Comparison of runtimes of fastGWA, BOLT-LMM, and
PLINK2

Sample  GCTA-fastGWA BOLT-LMM PLINK2  MeMuqua _VMemiyyqy

Memgovt-mm VMemgovr-i|
size

Para. Assoc. Total Para. Assoc. Total Total (h)
est. (h) (h) (h) est.(h) (h) (h)

50,000 0.00 0.03 0.03 088 1.05 193 0.07 159%  34.0%

100,000 0.00 004 0.04 209 2.07 416 015 105% 20.4%
200,000 0.01 007 008 534 416 9.50 0.37 6.3% 1.5%
300,000 0.01 014 015 9.51 624 1575 0.81 5.2% 10.0%
400,000 0.02 023 025 1385 844 2229 115 4.9% 8.3%

Jiang et al (2019). A resource-efficient tool for mixed model association analysis of large-scale data. Nature Genetics.

fastGWA is remarkably fast, even faster than
plink2, which only corrects for population
structure with genetic PCs but not for
relatedness, so no random effect.

Linear Approximation to Logistic Regression
works well with balanced case-control designs
recall the homework problem when we

simulated case control and compared linear
vs. logistic regression
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boltLMM and fastGWA assume linearity of the
trait, even for diseases. This is justified for
balanced studies, where there are similar
numbers of cases and controls. But in the UK
Biobank, a cohort study, not selected by
diseases status, can have highly unbalanced
ratios of cases and controls. In extreme cases,
this unbalance can go very wrong. SAIGE next,
address this problem.



Generalized Mixed Models for Unbalanced Studies

- SAIGE

- Scalable and Accurate Implementation of
GEneralized mixed model

- unbalanced case control studies
- log(p/(1-p)) = xtest - Btest + u + ¢

Zhou, W. et al. (2018). Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic|
association studies. Nature Genetics, 50(9), 1-12.

to speed up computation, BOLT-LMM and
fastGWA use linear regression, which is a good
approximation to logistic regression when the
proportion of cases and controls are similar.
With unbalanced studies with much smaller
number of cases relative to controls or vice-
versa, the approximation starts to fail and
logistic regression must be used. Logistic mixed
effects models can be difficult to deal with but
Zhou et al developed a method that addresses
the problems and yields a calibrated method.

For Unbalanced Case/Control Studies: SAIGE

Table 1| Comparison of different methods for genome-wide association studies with mixed effect models

Method Algorithm Benchmarks
features complexity for UK Biobank
data coronary
artery disease
(PheCode 411)
Doesnot  Feasible Developed Accounts  Tests Time complexity  Memory Time  Memory
requirea  forlarge forbinary for quantitative usage (GB)  CPU
precomputed  sample  traits unbalanced  traits Sp1 Swp2 Step1 Stepz MU
genetic sizes case-control
relationship ratio
matrix
Logistic SAIGE v v v v v OPMN“Y OMN) MN/4 N 517 103GB
mixed  GMmAT v v OPN)  OMN) FN*  FN*  NA NA
model
Linear BOLT- v v v OPMN*Y OMN) MN/4 N 360  109GB
mixed  LMM
model  Gemma v ) OMN) FN°  FN°  NA NA
N.numberof " st W total numberof markers o betestedF, byt for foting

number, CPU, central NA,not applicable. inPC )

d
Thyroid cancer SAIGE

BOLT-LMM

thyroid cancer (case:control = 1:1,138, N = 407,757)

In the UKB there are only 1138 cases of thyroid
cancer vs 407K controls. BOLT-LMM would yield
a badly inflated association as shown in the
figure bottom left. SAIGE's results look much
better calibrated.

Prediction of Complex
Traits

Prediction of complex traits can help us better
taylor treatment of patients.



Simple Polygenic Score

LETTERS

Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder

The International Schizophrenia Consortium*

Just use GWAS

M
Y = Z B}?WASX/C
k=1

effect sizes

Polygenic risk scores are simple to calculate with
unexpectedly good prediction performance.

Best Linear Unbiased Prediction (BLUP)/Ridge

REPORT
GCTA: A Tool for Genome-wide Complex Trait Analysis

Jian Yang,1* S. Hong Lee,! Michael E. Goddard,23 and Peter M. Visscher!

AJHG 2011
Penalized regression
M
Y = Z pRidee x;
k=1
1V =" XiBill2 + Az Ball2
k

21

More sophisticated methods will use betas
estimated jointly. As we discussed earlier, to
make this work we can use a random effects
approach. This can be shown to be equivalent to
using a penalized likelihood, also known as
regularization. Ridge regression approach
minimizes the likelihood with a penalty on the L2
norm of the effect size vector, i.e. it tries to
minimize the mean square error while still
keeping the length of the effect size vector
small.

LASSO/Elastic Net Prediction

J. R. Statist. Soc. B (2005)
67, Part2, pp. 301-320

Regularization and variable selection via the

Penalized regression

elastic net

Hui Zou and Trevor Hastie
Stanford University, USA

1Y =37 XuBillz + AllBlls + Azl B2
k

M
Y =" BNy
k=1

LASSO penalizes sum of the absolute values of
the effect sizes, i,e,the L1 norm of the effect size
vector. These tend to yield sparse models, a few
SNPs rather than polygenic models.

Elastic net mixes both L1 and L2 norms yielding
less sparse models, although not quite
polygenic ones.



Whole Genome Prediction Approaches

OPEN & ACCESS Freely available online @PLOS ‘ GENETICS

Polygenic Modeling with Bayesian Sparse Linear Mixed
Models

Xiang Zhou'*, Peter Carb

1 h I 1,24

M M

Y= "B{Xe+ ) BiXpte
k=1 k=1

BE ~ N(0,07)
B ~ N(0,0%)

MultiBLUP: improved SNP-based prediction for complex traits
Doug Speed and David J Balding

Genome Res. published online June 24, 2014
Access the most recent version at doi:10.1101/gr.169375.113

Other approches for prediction include BSLMM,
multiBLUP, OmicKriging.

BSLMM models the genetic effects as coming
from a mixture of normals instead of just one
normal distribution. One with small variance
captures the polygenic component whereas the
large variance component captures the sparse
effects (a few SNPs with large effects). By
selecting the right can sparsity can be enforced.

Advantages of Polygenic Scores

Main advantage easy to get or calculate, scalable

GWAS results publicly available

vs. multivariate estimates need individual data

although some fine-mapping methods allow inferring
multivariate regression results

Current Methods for Improving Polygenic Scores

- Pruning and thresholding (PRSice)
- Lasso-sum (Mak et al)

- LD-Pred (Vilhjalmsson)

- RSS (Zhu)

- S-BayesR (Lloyd-Jones)

- PRS-CS

RSS and S-BayesR are likelihood-based methods, different priors on f's

Zhu, X., & Stephens, M. (2017). Bayesian large-scale multiple regression with summary statistics from genome-wide association studies. AOAS
Vilhjalmsson et al. (2015). Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. AJHG

Mak.et al (2017). Polygenic scores via penalized regression on summary statistics. Genetic Epidemiology, 41(6), 469-480

Luke R. Lioyd-Jones (2019). Improved polygenic prediction by Bayesian multiple regression on summary statistics. BioRxiv.

Ge, T., Chen, CY., Ni, Y. et al. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat Commun 10, 1776 (2019). hitps://doi.org/

10.1038/s41467-019-09718-5




Importance of Having Good LD Reference Data

All the methods listed in the previous page rely on
having good LD reference data.

With increasing sample sizes, methods that use
summary statistics and infer results similar to having
individual level data are critical.

- Summary statistics from GWAS are being widely
shared.

- LD reference from the same study is not, this is
something that needs to change

Clinical Utility of
Genetic Predictions

Genomic Prediction of Height in UK Biobank with biobank scale data, we are able to predict

height quite well using common variants

Males
© Females

180 190
L L

Actual Height (cm)
170
L

o 2000 Individuals

T T T T T
150 160 170 180 190

Predicted Height (cm)
Figure 4: Actual height (cm) versus predicted height (cm) using 2000 randomly selected individuals
held back from predictor optimization. Error bars indicate +1 SD range computed using larger
validation set. (Roughly equal numbers of males and females; no corrections of actual height for age

or gender. See Supplement for details of predictor training.)
Lello et al (2018). Accurate Genomic Prediction of Human Height. Genetics




Prevalence of Coronary Artery Disease Increases with PRS
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Khera et al (2018) Nature Genetics

Prevalence of Type 2 Diabetes Increases with PRS
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Mahajan et al (2019) Nature Genetics

Do PRS work for
everyone?




Portability of Prediction Across Ancestries

nature
PERSPECTIVE Befeics

Clinical use of current polygenic risk scores may
exacerbate health disparities

AliciaR. Martin ©%3**, Masahiro Kanai ©'>345, YoichiroK: i ©54, Yukinori Okada ©578,
Benjamin M. Neale ©'23 and Mark J. Daly ©'%3°

Ancestry Composition of Current GWAS The majority of the GWAS have been performed

in individuals of European descent.
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Fig. 1| Ancestry of GWAS participants over time, as compared with the
global population. Cumulative data, as reported by the GWAS catalog’®.
Individuals whose ancestry is ‘not reported’ are not shown.

Allele Frequency and LD Differ Across Ancestries Difference in LD are likely to make the transfer

of PRS difficult.

Many of the significant variants are likely to be
proxy to the causal ones. With different LD
proxies will vary across population contributing
o1 oz o3 o4 o5 the wrong value to the PRS.
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Fig.2| ips, allele frequency dif and local LD patterns between population pairs. Data analyzed from 1000 Genomes.

Population labels: AFR, continental African; EUR, European; EAS, East Asian. a, Cartoon relationships among AFR, EUR and EAS populations. b, Allele
frequency distributions in AFR, EUR and EAS populations of variants from the GWAS catalog. e-e, Color axis shows LD scale () for the indicated LD
comparisons between pairs of populations; the same region of the genome for each ison ( ive region is cf 1,51572-52857
kilobases) among pairs of SNPs polymorphic in both populations is shown, illustrating that different SNPs are polymorphic across some population pairs
and that these SNPs have variable LD patterns across populations.




PRS Does Not Transfer Well Across Populations
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Fig. 3 | Predicti relative to Europ estry i
across 17 itative traits and 5 i ions in the UKBB. All

phenotypes shown here are quantitative anthropometric and blood-panel
traits, as described in Supplementary Table 6, which includes discovery-
cohort sample sizes. Prediction target individuals do not overlap with the
discovery cohort and are unrelated; sample sizes are shown in Supplementary
Table 7. Violin plots show distributions of relative prediction accuracies,
points show mean values, and error bars show s.e.m. values. Prediction R? for
each trait and population are shown in Supplementary Fig. 12.

This loss of prediction performance is what was
reported by Martin et al.

Ongoing Efforts to
Diversify GWAS Studies

Genomic Privacy




Surge of Genomic Data Since First Draft of Human Genome

- New era of biomedical research massive amounts data

- Huge potential for new discoveries

- “Few blockbuster new cures” (NY Times)

- For full advantage, broad sharing of data and results is needed

- However, privacy of study participants has to be protected

Challenges in Sharing Genomic Results

- Summary statistics in large studies considered safe to publish
proportion of females vs. males,
average LDL cholesterol levels, etc.
- Genome wide association studies GWAS
- for millions of SNPs

- differential mutations frequencies in cases vs. controls are
generated

- Frequency of mutations in cases and controls used to be
publicly available

Forensic Study Revealed Vulnerability

- Forensic application - Homer et al (2008) Plos Genetics
- Effciency of new genotyping chips in forensic application
- DNA sample from crime scene
- DNA from suspect
- Determine whether suspect’s DNA is part of the sample

IS Y E-YU X

Id1 Id2 Id3 Id 4 Sample Popul  Suspect
SNP 1 1 2 0 0 0.75 1.10 0
SNP 2 1 0 0 1 0.50 1.25 1

SNP M 1 0 1 2 1.00 1.50 2




Quantitative Trait GWAS - What Are the Risks of Sharing?

Yi=o; +8;Xi;+ei

A

- o~ -1 . .
ﬂj:(xng) XY

We wanted to share the summary results
but wanted mathematical proof that it would not
allow re-identification of subjects.

Betas and Genotypes Are Known

b1 X1
N Average the product
B2 X2
| M
i > BiX1,
=1
Bum XM

Testing the Yhat Statistic in GoKinD Data

- Dataset from The Genetics of Kidneys in Diabetes
- Study long-term Type 1 diabetes adults (GoKinD)

- Phenotype: rank normalized cholesterol level
- n=1600
- Random sample of 1000 individuals
- 600 used as reference
- Using only the 1000 sample ran GWAS
B, Bay ., Bar

- Computed the statistic for all 1600

1,
Yhat[ = M Z/BjXI,j
Jj=1




Yhat as Predictor of Y - GoKinD data

Yhat vs. Y-mean
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False positive rate

if we use a threshold to separate the

"predicted” in the study and not in the study
(horizontal line on the left box plot figure), a
number of individuals will be true positives and a
number will be false positives, these can be used
use construct the ROC curve on the right.

Yhat Statistics

M

~ n N ~

Yi=w E 1:5J(XIJ - Xj)
J:

# of SNPs
# of individuals in the test sample
allelic dosage of individual / at SNP j

estimated mean using the reference group

2 X s »

estimated 8 for Y; = aj + B;X;j + €;
N




Conditional Distribution of Yhat

EY|X1,YI,in ~ (Y7 —p)
EY | X;,Y7,out ~ O, (%)
Var(Y) | X;,Y;,in =~ 02%
Var(Y) | X7, Y7, out =~ 02%

Power of the Method

Y — | M
power ~ ¢ (M — - za/2>
o n

To be compared to power for binary traits
M
power ~ & ( — - za>
n

For 5% alpha, 90% power,and Yr=p+o

M
13=—
n

What if Only Direction of Effects is Known
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Performance Improves with Multiple Phenotypes

Performance
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Summary of Genomic Privacy

- Showed that aggregate results from quantitative GWAS can
reveal individual's participation and phenotype

- Computed power of the identification method

- Determined that the direction of effects contains most of the
individual's information

- Established that identification becomes more accurate when
results from multiple phenotypes are combined

- Thus, there is need to develop data sharing strategies that
protect participant's privacy but also facilitate access to data

- Growing consensus now that re-identification risk is minor
compared to benefit of sharing summary results




