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LD Score Regression
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E[�2|lj ] = Nh2lj/M +Na+ 1

heritability confounders 
(pop. structure)

genetic 
correlation

Remember LD score regression allows us to 
decompose inflation into polygenic and 
confounder contributions. By running a 
regression of the chi2 statistics on ld scores, we 
can estimate heritability, effect of confounders 
(including population stratification and 
relatedness). By regressing the product of the 
zscores of two traits, one can also estimate the 
genetic correlation. Later, you will also see that 
by partitioning the ld scores into different 
functional categories, one can also partition the 
heritability of traits by functional category.

GWAS: Simple Linear Regression
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In a GWAS we find one SNP at a time

Find µ, a, β that minimizes squared error.  
These are fixed parameters.

| |Y − μ − a ⋅ age − β1 ⋅ X | |2

Y = μ + a ⋅ age + β1 ⋅ X + ϵ

Last class we saw that we can correct for 
population stratification by adding a random 
effects term to the linear model to capture the 
population structure and family structure. This 
was implemented in EMMAX. Today we will see 
how that random effect (u) is connected to the 
sum of the effects of all the SNPs in the 
genome. A typical GWAS may fit the model 
shown in this slide, with a mean μ, some 
covariates such as age, and the effect of a SNP 
X1 with effect size β1 and an error term that will 
"absorb" what the model is not able to capture. 
All parameters can be estimated by maximizing 
the likelihood, which is equivalent to minimizing 
the square difference between the phenotype 
and the regression function (if error term is 



assumed to be normally distributed). We say 
that we minimize the L2 norm of the error term.

Minimizing the L2 norm
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= (y1 − μ − a ⋅ age1 − β1 ⋅ x1)2+
(y2 − μ − a ⋅ age2 − β1 ⋅ x2)2+

(yn − μ − a ⋅ agen − β1 ⋅ xn)2

⋯ +

| |Y − μ − a ⋅ age − β1 ⋅ X | |2

Here we spell out what we mean by L2 norm.

Mixed Effects Modeling
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Can we fit all SNPs at the same time?

Why can’t we estimate betas by least squares?

Y = µ+ a age + �1X1 + �2X2 + · · ·+ �1,000,000X1,000,000



Mixed Effects Modeling
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Can we fit all SNPs at the same time?

Why can’t we estimate betas by least squares?

Y = µ+ a age + �1X1 + �2X2 + · · ·+ �1,000,000X1,000,000

Too many parameters and too 
few observations

Mixed Effects Modeling
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Can we fit all SNPs at the same time?

Why can’t we estimate betas by least squares?

Y = µ+ a age + �1X1 + �2X2 + · · ·+ �1,000,000X1,000,000

Too many parameters and too 
few observations

Assume � ⇠ N(0,�2
�) and estimate just the �2

�

Solution

It is reasonable to think that we could fit all the 
SNPs at the same time. The problem we 
encounter when we try to do that is that there 
are too many parameters and not enough data 
points. We typically have millions of SNPs and 
only thousands of individuals. Even with sample 
sizes growing the estimates would be overfitting 
the data and not work very well in new 
individuals. So instead of fitting millions of βs as 
fixed effects, we can consider them to be 
random and estimate their distribution, i.e. 
consider  
β to be normally distributed with mean 0 and 
variance σ2 and only estimate the variance 
parameter σ2 . 

Mixed Effects Modeling
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Y = fixed e↵ects + random e↵ects + noise

= fixed e↵ects +
X

�kXk + ✏

�k ⇠ N(0,�2
�)

are random�0
ks

** this is one form of Regularization, more on this later



Connection to EMMAX Used To Account for Population Structure?
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Y = fixed e↵ects + random e↵ects + noise

= fixed e↵ects +
X

�kXk + ✏Y

Recall EMMAX
- Y = xtest · βtest  +  u  +  ε
- u ~ N(0,σ2 ·K)

u

Y = Xtest ⋅ βtest + ∑
k

Xkβk + ϵ

Here we can see the connection between the 
EMMAX' random effect u and the sum of the 
effects of all the snps. To demonstrate that 
Emmax random effect is the same as the sum of 
the effects of all the snps, all we need to do is to 
shown that they have the same covariance 
matrix, also equal to the genetic relatedness 
matrix.

Calculate K
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Kernel 
Similarity matrix 
Genetic Relatedness Matrix

Leave One Chromosome Out
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u

Y = Xtest ⋅ βtest + ∑
k

Xkβk + ϵ

Initially, EMMAX was calculating K using all SNPs 

Issue: deflation due to proximal contamination 
Solution: LOCO, leave one chromosome out

The equivalence between the random effect u 
and the sum of the effects of all the snps 
provide an explanation to the deflation seen in 
EMMAX results.  

The effect of a snp is being explained by both 
the fixed effects and the random effect, so the 
power to detect the effect is diluted and 
absorbed by the random effect component. 
LOCO (leave one chromosome out) is an easy 
solution to this problem, for each test SNP, only 
use the variants outside of the chromosome 
where theist SNP is located, ensuring that there 
will be no LD between SNPs that make up u and 
the test SNP.



Biobank-Scale Ready LMM Methods

- EMMAX
- original mixed effects modeling proposal to correct for population and family 

structure
- Y = xtest · βtest  +  u  +  ε
- u ~ N(0,σ2 ·K)

- BOLT-LMM (Loh et al, 2015, 2018)
- Y = xtest · βtest  +  u  +  ε
- u ~ π · N(0,σ2small·K) + (1 - π) · N(0,σ2large·K)

- fastGWA (Jiang et al 2019)
- Y = xtest · βtest  + PC · βpc  +  u  +  ε 
- u ~ N(0,σ2 ·K), K only kinship by rounding off elements < 0.05
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Loh et al (2018). Mixed-model association for biobank-scale datasets. Nature Genetics.

Jiang et al (2019). A resource-efficient tool for mixed model association analysis of large-scale data. Nature Genetics.

Kang et al (2010). Variance component model to account for sample structure in genome-wide association studies. Nature Genetics.

Example
K

The main reason mixed effects models were not 
adopted more broadly is the computational 
cost. For example, most publications using the 
UK Biobank data use only unrelated individuals 
which means going from a sample size of 450K 
down to ~330k. 
To address this problem, several biobank-scale 
ready methods that reduce the computational 
burden have been published. Two prominent 
ones are BOLT-LMM and fastGWA. 

BOLT LMM Power Gain in UK Biobank
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Loh et al (2018). Mixed-model association for biobank-scale datasets. Nature Genetics.

increased sample size + adjustment of polygenic component

459,327 all British  
vs. 

337K unrelated

BOLT-LMM
Y = xtest · βtest  +  u  +  ε

BOLT-LMM fits the SNP of interest, Xtest, with the 
random effects term computed LOCO. 

To gain computational speed, BOLT-LMM fits the 
model without the test SNP, i.e.the null model 
for the test SNP. This is done once per each 
chromosome. 

Then the residual Y - u to test whether Xtest is 
associated with the Y. 

The authors claim that by doing this they not 
only gain by sample size increase due to 
including the related individual, but also by 
adjusting for the polygenic component, which is 
captured by the u. In this figure boltlmm is 
shown to increase the number of discoveries by 
more than 80%.



fastGWA's Simulation Show Inflation of BOLT-LMM
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Jiang et al (2019). A resource-efficient tool for mixed model association analysis of large-scale data. Nature Genetics.

fastGWA is another method capable of handling 
biobank scale GWAS with complex population 
and relatedness structure.  

fastGWA adjusts for population structure using 
the more traditional approach of using genetic 
principal components as covariates. A random 
effect is used to adjust for relatedness by using a 
"rounded" version of the relatedness matrix, 
where all values below 0.05 are replaced by 0, 
yielding the kinship matrix. 

They suggest that BOLT-LMM's increased 
discoveries may be due to inflation rather that 
its ability to leverage polygenicity.  

fastGWA is FAST and Memory Efficient
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Jiang et al (2019). A resource-efficient tool for mixed model association analysis of large-scale data. Nature Genetics.

fastGWA is remarkably fast, even faster than 
plink2, which only corrects for population 
structure with genetic PCs but not for 
relatedness, so no random effect. 

Linear Approximation to Logistic Regression
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works well with balanced case-control designs

recall the homework problem when we 
simulated case control and compared linear 

vs. logistic regression

boltLMM and fastGWA assume linearity of the 
trait, even for diseases. This is justified for 
balanced studies, where there are similar 
numbers of cases and controls. But in the UK 
Biobank, a cohort study, not selected by 
diseases status, can have highly unbalanced 
ratios of cases and controls. In extreme cases, 
this unbalance can go very wrong. SAIGE next, 
address this problem.



Generalized Mixed Models for Unbalanced Studies

- SAIGE 
- Scalable and Accurate Implementation of 

GEneralized mixed model
- unbalanced case control studies
- log( p / (1-p)) = xtest · βtest  +  u  +  ε
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Zhou, W. et al. (2018). Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic 
association studies. Nature Genetics, 50(9), 1–12.

to speed up computation, BOLT-LMM and 
fastGWA use linear regression, which is a good 
approximation to logistic regression when the 
proportion of cases and controls are similar. 
With unbalanced studies with much smaller 
number of cases relative to controls or vice-
versa, the approximation starts to fail and 
logistic regression must be used. Logistic mixed 
effects models can be difficult to deal with but 
Zhou et al developed a method that addresses 
the problems and yields a calibrated method.

For Unbalanced Case/Control Studies: SAIGE
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thyroid cancer (case:control = 1:1,138, N = 407,757)  

In the UKB there are only 1138 cases of thyroid 
cancer vs 407K controls. BOLT-LMM would yield 
a badly inflated association as shown in the 
figure bottom left. SAIGE's results look much 
better calibrated.

Prediction of Complex 
Traits

Prediction of complex traits can help us better 
taylor treatment of patients.  



Simple Polygenic Score
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Nature 2009

Y =
MX

k=1

�̂GWAS
k Xk

Just use GWAS 
effect sizes

Polygenic risk scores are simple to calculate with 
unexpectedly good prediction performance.

Best Linear Unbiased Prediction (BLUP)/Ridge
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AJHG 2011

Y =
MX

k=1

�̂Ridge
k Xk

Penalized regression

Ridge

kY �
X

k

Xk�kk2 + �1k�k1 + �2k�2k2

More sophisticated methods will use betas 
estimated jointly. As we discussed earlier, to 
make this work we can use a random effects 
approach. This can be shown to be equivalent to 
using a penalized likelihood, also known as 
regularization. Ridge regression approach 
minimizes the likelihood with a penalty on the L2 
norm of the effect size vector, i.e. it tries to 
minimize the mean square error while still 
keeping the length of the effect size vector 
small.

LASSO/Elastic Net Prediction
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Y =
MX

k=1

�̂E-N
k Xk

Penalized regression

LASSO Elastic 
Net

kY �
X

k

Xk�kk2 + �1k�k1 + �2k�2k2

LASSO penalizes sum of the absolute values of 
the effect sizes, i,e,the L1 norm of the effect size 
vector. These tend to yield sparse models, a few 
SNPs rather than polygenic models. 

Elastic net mixes both L1 and L2 norms  yielding 
less sparse models, although not quite 
polygenic ones.
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Whole Genome Prediction Approaches
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Y =
MX

k=1

�L
k Xk +

MX

k=1

�S
kXk + ✏

�L
k ⇠ N(0,�2

L)

�S
k ⇠ N(0,�2

S)

Other approches for prediction include BSLMM, 
multiBLUP, OmicKriging. 
BSLMM models the genetic effects as coming 
from a mixture of normals instead of just one 
normal distribution. One with small variance 
captures the polygenic component whereas the 
large variance component captures the sparse 
effects (a few SNPs with large effects). By 
selecting the right can sparsity can be enforced.

Advantages of Polygenic Scores
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Main advantage easy to get or calculate, scalable

GWAS results publicly available

vs. multivariate estimates need individual data 

although some fine-mapping methods allow inferring  
multivariate regression results 

Current Methods for Improving Polygenic Scores

- Pruning and thresholding (PRSice)

- Lasso-sum (Mak et al)

- LD-Pred (Vilhjálmsson)

- RSS (Zhu)

- S-BayesR (Lloyd-Jones)

- PRS-CS
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Zhu, X., & Stephens, M. (2017). Bayesian large-scale multiple regression with summary statistics from genome-wide association studies. AOAS 
Vilhjálmsson et al. (2015). Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. AJHG 
Mak,et al (2017). Polygenic scores via penalized regression on summary statistics. Genetic Epidemiology, 41(6), 469–480. 
Luke R. Lloyd-Jones (2019). Improved polygenic prediction by Bayesian multiple regression on summary statistics. BioRxiv. 
Ge, T., Chen, CY., Ni, Y. et al. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat Commun 10, 1776 (2019). https://doi.org/
10.1038/s41467-019-09718-5

RSS and S-BayesR are likelihood-based methods, different priors on β′ s



Importance of Having Good LD Reference Data
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All the methods listed in the previous page rely on 
having good LD reference data.

With increasing sample sizes, methods that use 
summary statistics and infer results similar to having 
individual level data are critical. 

- Summary statistics from GWAS are being widely 
shared.
- LD reference from the same study is not, this is 
something that needs to change

Clinical Utility of 
Genetic Predictions

Genomic Prediction of Height in UK Biobank
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Lello et al (2018). Accurate Genomic Prediction of Human Height. Genetics

with biobank scale data, we are able to predict 
height quite well using common variants



Prevalence of Coronary Artery Disease Increases with PRS
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Khera et al (2018) Nature Genetics

Prevalence of Type 2 Diabetes Increases with PRS
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Mahajan et al (2019) Nature Genetics

Do PRS work for 
everyone?



Portability of Prediction Across Ancestries
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Ancestry Composition of Current GWAS
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The majority of the GWAS have been performed 
in individuals of European descent. 

Allele Frequency and LD Differ Across Ancestries
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Difference in LD are likely to make the transfer 
of PRS difficult. 
Many of the significant variants are likely to be 
proxy to the causal ones. With different LD 
proxies will vary across population contributing 
the wrong value to the PRS.



PRS Does Not Transfer Well Across Populations
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This loss of prediction performance is what was 
reported by Martin et al.

Ongoing Efforts to 
Diversify GWAS Studies

Genomic Privacy



Surge of Genomic Data Since First Draft of Human Genome

- New era of biomedical research massive amounts data

- Huge potential for new discoveries

- “Few blockbuster new cures” (NY Times)

- For full advantage, broad sharing of data and results is needed

- However, privacy of study participants has to be protected
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Challenges in Sharing Genomic Results

- Summary statistics in large studies considered safe to publish 
- proportion of females vs. males,
- average LDL cholesterol levels, etc.

- Genome wide association studies GWAS
- for millions of SNPs
- differential mutations frequencies in cases vs. controls are 

generated

- Frequency of mutations in cases and controls used to be 
publicly available
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Forensic Study Revealed Vulnerability

- Forensic application - Homer et al (2008) Plos Genetics  

- Effciency of new genotyping chips in forensic application
- DNA sample from crime scene
- DNA from suspect
- Determine whether suspect’s DNA is part of the sample

- Implication for GWAS results

- NIH withdrew public access to aggregate results
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Quantitative Trait GWAS - What Are the Risks of Sharing?
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We wanted to share the summary results
but wanted mathematical proof that it would not 

allow re-identification of subjects.

Betas and Genotypes Are Known
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�̂1 XI,1

�̂2 XI,2

...
...

�̂M XI,M

Average the product

1

M

MX

j=1

�̂jXI,j

Testing the Yhat Statistic in GoKinD Data

- Dataset from The Genetics of Kidneys in Diabetes 
- Study long-term Type 1 diabetes adults (GoKinD)

- Phenotype: rank normalized cholesterol level 

- n = 1600

- Random sample of 1000 individuals

- 600 used as reference

- Using only the 1000 sample ran GWAS

- Computed the statistic for all 1600
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�̂1, �̂2, ..., �̂M

YhatI =
1

M

MX

j=1

�̂jXI,j



Yhat as Predictor of Y - GoKinD data
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True for non-heritable 
or simulated traits

Distribution of Yhat and Performance - GoKind data
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if we use a threshold to separate the 
"predicted" in the study and not in the study 
(horizontal line on the left box plot figure), a 
number of individuals will be true positives and a 
number will be false positives, these can be used 
use construct the ROC curve on the right.

Yhat Statistics
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Conditional Distribution of Yhat
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E Ŷ | XI , YI , in ⇡ (YI � µ)

E Ŷ | XI , YI , out ⇡ Op
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M

Power of the Method
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power ⇡ �

 
|YI � µ|
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M

n

To be compared to power for binary traits

For 5% alpha, 90% power, and

What if Only Direction of Effects is Known
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Ŝ =
MX

j=1

sign(�̂)sign(Xij � X̂j)

FALSE TRUE
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Performance Improves with Multiple Phenotypes
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Summary of Genomic Privacy

- Showed that aggregate results from quantitative GWAS can 
reveal individual's participation and phenotype

- Computed power of the identification method

- Determined that the direction of effects contains most of the 
individual's information

- Established that identification becomes more accurate when 
results from multiple phenotypes are combined 

- Thus, there is need to develop data sharing strategies that 
protect participant's privacy but also facilitate access to data

- Growing consensus now that re-identification risk is minor 
compared to benefit of sharing summary results
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