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Mixed Effects 
Modeling

In our previous lecture on 
population structure, we saw that 
genomic control and genetic 
principal components are useful 
tools to correct for population 
structure. Today we will see two 
additional approaches. One is based 
on mixed effects modeling and the 
other is using LD score regression.

Mixed Effects Modeling Corrects Relatedness + Pop Strat
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Useful to adjust for confounding due to population 
stratification, family structure and cryptic relatedness

Kang et al Variance component model to account for sample structure in genome-wide association studies  
Nature Genetics, Mar. 2010.

Y = Xβ + u + ϵ

u ∼ N(0,σ2
g ⋅ K)

Mixed effects models are just 
regression models, for simplicity 
think linear regression, where in 
addition to the traditional "fixed" 
effects of the covariates, there are 
"random" effects. In this case, β is a 
fixed effect, whereas u is a random 
effect. Random effects are specified 
by their distribution, in this case u is 
normally distributed with mean 0 



and variance σg·Κ. 
When K is the genetic relatedness 
matrix (genetic correlation between 
individuals), then this model is able 
to account for population structure, 
family structure, and cryptic 
relatedness.

Example with 4 individuals
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Y ∼ N( Xβ, σ2
g ⋅ K + σ2

ϵ ⋅ I )

Y = Xβ + u + ϵ u ∼ N(0,σ2
g ⋅ K)

Let's look at a simple example with 4 
individuals, two from EUR ancestry and 
two from AFR ancestry. No family 
structure or cryptic relatedness. Here u 
represents the effect of population 
status on the phenotype Y. The matrix 
K represents the population pattern in 
the data and σg is the scale of the 
effect, a measure of the effect of the 
population membership on the 
phenotype. 

Example: 4 individuals and simple population structure
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Y ∼ N( Xβ, σ2
g ⋅ K + σ2

ϵ ⋅ I )

Y = Xβ + u + ϵ
Calculate K when 

u1=u2 = u(AFR)

u3=u4 = u(EUR)

u ∼ N(0,σ2
g ⋅ K)

Assuming individuals 1 and 2 are of 
African descent and 3 and 4 are of 
European descent. u1 = u2 = uAFR and u3 
= u4 = uEUR. We also assume that the 
the population effects are independent 
across populations, i.e. that uEUR is 
orthogonal to uAFR. Since we are 
assuming that the mean is 0, the 
variance of the u's are given by E u^2. 
With these assumptions, we can 
calculate the covariance matrix of u, 
which is by definition = σg·Κ. Recall also 
that you would calculate the covariance 



matrix of a vector as E u·u'.


Example with 4 individuals
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Using all these facts, we can calculate 
K in this simple two ancestry 
population. K is formed with block 
matrices of ones, on the diagonal and 
0's off the diagonal, which seems 
consistent with our intuition of what 
these should look like. 

We seen last week, in these simple 
structure cases, we can either add a 
fixed effects that represents the 
population effect or perform separate 
analysis of each population and 
combine the results via meta-analysis. 
Mixed effect modeling gives us an 
alternative, which can be extended to 
more general cases where population 
may not be clearly separated, with a 
gradient for example. It also allows 
more general structure that includes 
relatedness.



Mixed Effects Modeling Corrects Relatedness + Pop Strat
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H. M. Kang, J. H. Sul, S. K. Service, N. A. Zaitlen, S.-Y. Kong, N. B. Freimer, C. Sabatti, and E. Eskin, “Variance component 
model to account for sample structure in genome-wide association studies,” Mar. 2010.

In this figure, Kang et all show 
compare the uncorrected p-values, 
which look clearly inflated, with the 
p-values after correcting for 100 
principal components (calculated 
with eigensoft) and the EMMAX-
corrected (mixed effects approach) 
p-values which look much less 
inflated. Panel b shows the 
comparison of EMMAX to the 
simple genomic control approach 
(divide the chi2 statistic by the 
inflation factor λ) showing similar 
correction of inflation (because the 
points are located around the 
identify line). 
Notice that the authors use of 
genomic control as a measure of 
goodness of fit.

HapMap Trios Relatedness Matrix
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Here is the genetic relatedness matrix 
of 2 European and 2 African trios 
(mother, father, and child) from HapMap 
(YRI, EUR) calculated using plink's 
make-grm-gz command. 


The population structure is apparent in 
the 6 by 6 distinct blocks, and the 
family structure (trios) manifests as 
smaller blocks of 3 by 3.


Random mating seems to be a 
reasonable assumption. Explain why. 




Can you recognize which individual is 
the child within each trio?


## 1345    NA07349 NA07347 NA07346 1       0       CEU

## 1353    NA12376 NA12546 NA12489 2       0       CEU

## Y051    NA19208 NA19207 NA19206 1       0       YRI

## Y058    NA19221 NA19223 NA19222 2       0       YRI

https://hakyimlab.github.io/hgen471/L9-GRM.html


Combination Strategy vs. Mixed Effects
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• Use genetic relatedness 
matrix to account for 
sample structure

• Remove close relatives


• Correct broad sample 
structure with principal 
components


• Correct residual inflation 
with genomic control 
(divide χ2 stat. by λ)


Combination Mixed Effects Model

Mixed effects models are great tools to 
model data with complex underlying 
structure but can be computationally 
expensive and has been shown that 
sometimes it can over correct causing 
deflation of association statistics. Still 
today, the more naive approach of 
simply removing close relatives is quite 
common (you can find tons of paper in 
the UKB where over 100K individuals 
were excluded to avoid dealing with 
relatedness).

Genetic Architecture



Genetic Architecture of Complex Traits
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What is the genetic architecture of 
complex traits? By genetic architecture, 
we mean the distribution of effect sizes 
(for example, a few variants of large 
effects or many variants of small 
effects) or the dependence of the effect 
sizes as a function of minor allele 
frequencies.

When the first GWAS were performed in 
common disease, it was thought that 
we would find a few genes which cause 
the disease (large effect sizes = high 
penetrance) since the diseases with 
known genetics at the time were mostly 
monogenic.

Genetic Architecture of Complex Traits
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After many attempts to find large effect 
variants, the GWAS community came to 
terms with the fact that the genetic 
architecture of common diseases and 
traits is highly polygenic with likely 
many causal variants sort of uniformly 
distributed across the genome, each 
with a modest effect size. The 
alternative explanation that there are 
multiple genes with high penetrance 
(large effect sizes) and that because 
each person carries a different causal 
gene, the estimated effects in GWAS 



ended up being diluted and look like 
they are very small. This model of 
diseases is known as the "Anna 
Karenina" model. Anna Karenina is a 
novel by Tolstoi which starts with the 
paragraph "All happy families are alike; 
each unhappy family is unhappy in its 
own way." Large family studies (which 
should be enriched with the same 
causal gene) have failed to identify 
effect genes providing overwhelming 
evidence that most diseases do not 
follow this "unhappy in its own way" 
pattern.

Genetic Architecture of Complex Traits
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Y =
M

∑
k

Xk ⋅ βk + ϵ

causal variants are distributed across the genome

Trait-associated loci cover half of the genome*

*Watanabe et al, "A global overview of pleiotropy and genetic architecture in complex traits" Nature Genetics 2019

We will be using this polygenic additive 
model as our default model for complex 
diseases and traits.


Watanabe et al analyzed 4155 GWAS 
and found that trait-associated loci 
cover half of the genome.



Polygenic Architecture of Complex Traits
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Purcell et al. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. 

Nature, 460(7256), 748–752. http://doi.org/doi:10.1038/nature08185

3,322 schizophrenia cases
3,587 controls

In 2009, the lack of GWAS significance 
results forced the investigators to look 
beyond single variant approaches and 
discovered that aggregating many 
variants with a loose cut of threshold for 
p-value could predict schizophrenia 
disease status. Their conclusion was 
that common polygenic variation 
contributes to risk of schizophrenia and 
bipolar disorder. This was the first major 
influential publication that used 
polygenic risk scores to predict 
complex traits.

Large Samples Needed to Detect Associations

15

Number of GWAS loci discovered goes 
up with sample size. As the example 
with schizophrenia showed, some 
minimum sample size is needed to start 
identifying the associated loci.

Growth of GWAS Discoveries
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Over time, the GWAS community has 
continued adding more individuals and 
additional phenotypes leading to a 
rapid increase in the number of 
discoveries. We still don't understand 
the mechanism behind most of these 
variants.



Large Biobank Cohorts
n ~ 1 million

Sample Sizes Growth Fueled by Meta Analysis Consortia and Biobanks
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Large Meta Analysis 
Consortia (n~millions)

National 
Biobank of 

Korea

Biobank 
Japan

Biobank 
Estonia

Meta analysis consortia have been 
very successful because different 
investigators had to share only the 
summary results. Individual level 
data sharing is much more difficult 
because of regulatory, consent 
issues. Also computational cost of 
handling massive sample sizes limits 
the size. Methods that integrate 
summary level data are in high 
demand. 

Biobanks are other ways in which 
the field has increased sample sizes. 
But this has created the need for 
statistical methods that can handle 
the massive datasets. 

Both data types have created the 
need to develop novel methods. We 
will see some of these methods in 
the coming lectures.



LD Score Regression

Inflation of GWAS Results
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B. K. Bulik-Sullivan, P.-R. Loh, H. K. Finucane, S. Ripke, J. Yang, N. Patterson, M. J. Daly, A. L. Price, and B. M. Neale, “LD Score regression distinguishes confounding from polygenicity in 
genome-wide association studies,” Nat Genet, vol. 47, no. 3, pp. 291–295, Feb. 2015.

Inflation of summary statistics (-log10 p 
here) can be due to two effects: 

- confounders such as population 

structure, relatedness, etc

- true polygenicity (most variants have 

a causal effect or are in LD with 
causal variants)


Genomic control method does not 
distinguish between true polygenicity 
and inflation due to population 
stratification.

High LD regions -> High Chi2 Statistics
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https://twitter.com/saralpulit/status/1034757626494705665

This represents a locus zoom-like plot 
with Chi2 statistics instead of p-values. 
The basic principle of LD score 
regression relies on the fact that if we 
assume a polygenic model, then 
variants that are in high LD regions, will 
have higher association statistic (chi2 
here). More informally, SNPs with many 
LD-friends will be lifted up in the chi2 
chart because they are more likely to 
tag causal variants that SNPs without 
LD-friend.



LD Score: Measure of LD with Neighboring Variants
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ld score: lj = ∑
k

r2
j,k

amount of genetic variation tagged by variant j

ld-score is a measure the number of 
"LD-friends", and it's calculated as the 
sum of LD. Each genetic variant will 
have one such score.

LD Score Regression
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E[�2|lj ] = Nh2lj/M +Na+ 1
B. K. Bulik-Sullivan, P.-R. Loh, H. K. Finucane, S. Ripke, J. Yang, N. Patterson, M. J. Daly, A. L. Price, and B. M. Neale, “LD Score regression distinguishes confounding from polygenicity in 
genome-wide association studies,” Nat Genet, vol. 47, no. 3, pp. 291–295, Feb. 2015.

Polygenic 
component

confounders, 
Population 
Structure, 

Relatedness

Polygenic 
component

confounders, 
Population 
Structure, 

Relatedness

Bulik-Sullivan et al show that we can 
distinguish inflation due to 
confounding (a) and polygenicity (b) 
by regressing the chi2 statistic 
against ld-score. The intercept 
should be 1 if there were no 
inflation. Any number above 1 can 
be interpreted as inflation due to 
population or relatedness 
confounding. The slope of the 
regression allows us to calculate the 
heritability. 

N is the sample size, M is the number of variants, h2 is the 
heritability explained by the M variants in aggregate, and 
a represents a measure of confounding. Notice that the 
effects of both confounding and polygenicity increases 
with the sample size. 
Note: regression weights are used to account for 
heteroskedasticity, i.e. the fact that errors are larger for 

higher LD score.



LD Score Regression Distinguishes Confounding from Polygenicity

- Variants in LD with a causal variant show inflation in test 
statistics proportional to their LD with the causal variant.

- The more genetic variation an index variant tags, the higher the 
probability that this index variant will tag a causal variant

- Inflation from cryptic relatedness or population stratification 
purely from genetic drift will not correlate with LD

- Assumptions: polygenic model, effect sizes for variants drawn 
independently from distributions with variance proportional to 1/
(p(1 – p))

23

E[�2|lj ] = Nh2lj/M +Na+ 1
LD Score regression distinguishes confounding from polygenicity https://rdcu.be/b07sl

LD Score Regression
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E[�2|lj ] = Nh2lj/M +Na+ 1

N = sample size

M = number of SNPs

h2/M = variance explained per SNP

a = confounding biases, cryptic relatedness

and population stratification

lj =
X

k

r2jkamount of genetic variation

tagged by SNP j

E[�2|lj ] = Nh2lj/M +Na+ 1

Polygenic 
component

confounders, 
Population 
Structure, 

Relatedness

LD Score Regression - Schizophrenia
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Genomic Control vs. LD Score 
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Notice that the intercept, a new 
measure of confounder driven inflation, 
is systematically smaller than the one 
calculated by the genomic control λGC. 

LD Score Values on Chromosome 22 
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Calculated by Yanyu Liang using GTEx V8 reference variant set

To get a sense of the range of values LD 
score can take, here is a plot of the LD 
score values calculated on 
chromosome 22.

Genetic Correlation Between Traits
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Bulik-Sullivan, Finucane, et al. (2015). An atlas of genetic correlations across human diseases and traits. 

Nature Genetics, 47(11), 1236–1241. http://doi.org/10.1038/ng.3406

With the same assumptions as used for 
the derivation of the LD score, one can 
calculate the genetic correlation 
between traits using the same 
techniques for the ld-score regression. 
This genetic correlation can provide 
additional insight into some of the 
epidemiological/observed correlation 
between these traits. These avoid some 
of the confounders in observational 
studies providing additional insights 
and orthogonal sources of evidence for 
the associations.
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