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Let's agree in some common terminology. Monogenic or

Example: Monogenic/Mendelian Disease (Rare)

Mendelian diseases such as cystic fibrosis are caused by a loss

of function mutation in a single gene. These diseases tend to

Cystic fibrosi . .
ystic tbrosis be severe and because of selection the mutations tend to be

®8 » rare.
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https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores

Complex diseases are due to the accumulated effects of

Example: Complex Disease (Common)

multiple and usually common variants.

Coronary artery disease
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Effect Size & Allele Frequency Diagram
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These two types of diseases and their causal variants can be

placed in this diagram of effect size vs allele frequency.

The diagonal region of this diagram represents the allelic
frequency and phenotypic effect spectrum where gene
mapping typically occurs. Highly penetrant mutations (large
effect size) tend to be rare and historically have been
discovered via linkage. Examples are BRCA1 and BRCA2
(breast cancer), CFTR (cystic fibrosis).

Our focus will be in the lower regions of the diagonal band:
common variants with small effects region and stretching
towards the intermediate frequency variants with moderate
effects, when sample size/power of the study permits.
Association methods thrive in the lower portion of the

diagonal.

Highly penetrant mutations have been mostly detected via
pedigree-based linkage studies whereas GWAS are well

powered to discover common variants with small effects.

Penetrance is the proportion of mutation carriers who
manifest the disease. High penetrance is equivalent to large
effect size but penetrance is a term used more in the rare
disease context whereas effect size is more commonly used

for common diseases.

A brief history of human disease genetics. Claussnitzer etal 2020
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Even though in this course we will be focusing on common
diseases and traits, as the field advances we are starting to
erase the divide between Mendelian and common disease

genetics.

| highly recommend to read this recent review of human
disease genetics. Claussnitzer, M., Cho, J. H., Collins, R., Cox,
N. J., Dermitzakis, E. T., Hurles, M. E., et al. (2020). A brief
history of human disease genetics. Nature, 577(7789), 179-
189. http://doi.org/10.1038/s41586-019-1879-7



Gene Mapping Methods

Linkage analysis
- popular before Human Genome Project's completion

- based on co-transmission of genetic markers and disease genes
- afew hundred markers can cover the whole genome

- low resolution

- pedigree/family based

Association mapping

- genetic markers in LD with disease genes

- need a large number of markers (~ 1 million)
- higher resolution

- families not needed

Linkage and association are main approaches for mapping
genes to diseases and other human traits. Before the
completion of the Human Genome Project and the cost of
genotyping more than a few hundred markers was prohibitive,
linkage analysis was the most popular approach to identify
disease loci. It is based on the co-transmission of genetic
markers and disease genes. Advantages were that a few
hundred markers were enough to cover the whole genome.
But the downside was the low resolution and the fact that
recruiting large families is more difficult than a large number

of unrelated individuals.

Association methods are based on the LD between genetic
markers and disease genes. For common variants (say,
MAF>5%) about 1 million SNPs can tag most common
variants. So that even if the causal variant is not measured but
is common, a closely correlated (in LD) SNP can be detected.
These are called tag SNP or index SNPs.

Common (complex) disease

Genome-wide significant association signals
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Claussnitzer et al, Brief History of Human Diseas 2
Genetics, 2020, Nature
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In 1996, Risch and Merikangas published a highly influential
perspective paper that show the benefits of GWAS.

We have come a long way since the landmark publication of
the WTCCC GWAS in 17,000 cases of 7 common diseases and
controls.

Sample sizes continued to grow over the years, identifying
increasing number of genomic loci associated with complex
traits.

In 2006, recruitment for the UK Biobank project started.
Today we will look look at the UK Biobank GWAS performed

half a million participants.



Review
Hypothesis Testing

Before going into the techniques of association, let's review a

Review: Hypothesis Testing

few concepts.

- Ho : null hypothesis

We reject the null Ho if the observed test statistic is more
- e.g. no difference in case-control allele frequencies

extreme than a threshold, which is determined so that the

- Ha: alternative hypothesis probability of type | error stays below a pre-established

- there is a difference, i.e. causal variant significance level «. Usually, if p-values are smaller than the
- Test statistic Z significance level, then the null hypothesis is rejected.

in many situations associated to a model
- Significance level

- a = allowed type | error (reject null when null is true)

- p-value = P(observed test statistic more extreme than
threshold | Ho )
We reject the null hypothesis if the observed test statistic is more
extreme than what we would expect could happen by chance

Review: Hypothesis Testing This figure shows the test statistics under the null hypothesis

HO and the alternative hypothesis Ha. The decision rule is to

. Ho H reject the null hypothesis if the test statistics is larger than a
given threshold. Typically, we choose a significance level « --
03 the type | error that we are willing to accept-- and calculate

the threshold above which the null hypothesis will be rejected.

Frequency
°

A typical significance level used in practice is ®=0.05. But we
o will see that when we run multiple tests, things can go wrong

very quickly, so that a much more stringent significance level is

-4 -2 0 2 4 6 8 requil’ed.

a: type | error, probability of rejecting the null when the null is true They type Il error is the probability of not rejecting the null

B: type Il error, probability of not rejecting the null when the null is false when the alternative hypothesis is true. Power is the

probability that we will reject the null when the alternative is

| frue:




Regression Approach
Single SNP

Regression Approach

Y=pu+a-age+p-X+e¢

- Parameters 3 are estimated (using MLE, least squares, etc)

- Null hypothesis B =0

- Many types of traits can be treated with the same approach
- Can correct for covariates (age, sex, ethnicity)

- Prediction

The evidence for association can be quantified using the
Pearson Chi2 test of independence between case status and
genotype using a table of counts. This only allows to test
binary traits. To accommodate other types of phenotypes,
such as continuous traits or counts, we can use a regression

approach.

The phenotype, Y, is modeled as a constant term, effects of

covariates (e.g. age, sex, ethnicity) and the genetic effect.

Advantages: we can correct for covariants, we can use for

prediction.

Regression Approach for Quantitative Traits

Quantitative trait:

e.g. height, BMI, systolic blood pressure

Y ~ N(u,0%)
p=FEY)= 05+ p1X1

Linear Regression

genotype: aa,aA, AA

X, : dosage = number of A alleles

Quantitative traits are typically modeled with normal errors
and mean given by the a constant B0 and a genetic effect 1.

X here indicates the number of minor alleles.



Regression Approach for Disease Traits

Binary trait:
e.g. disease status, hypertension

Y ~ Bernoulli(r)

logit () = log(;——) = Bo + 1 X1

Logistic Regression

X, : dosage = number of A alleles

PY=1)=n

odds = T
1—7
genotype: aa,aA, AA

Binary traits are typically modeled using logistic regression.
Instead of the E(X), we use the log of the odds = log(r/ (1-m))

of being a case.

odds = prob / (1 - prob )
betal = log odds ratio

for an individual with X1 = 0, the log odds of having the
disease is betal
for an individual with X1 = 1, the log odds of having the

disease is beta0 + betal

therefore, beta1 is the log of the odds ratio

Recall that the log of a ratio is the difference of the logs:
log(A/B) = log(A) - log(B)

Regression Approach for Count Data

Count data:

e.g. number of reads that align to an exon

Y ~ Poisson(\)
log(A) = log(E(Y)) = fo + f1X1

Poisson Loglinear Regression

genotype: aa,aA, AA

X, : dosage = number of A alleles

Count data can be modeled with a poisson log

Genome-wide
Association Studies




Genome-wide Association Studies
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GWAS collect individuals (cases and controls for disease or a
population sample of individuals for quantitative traits),
measures the genotype of individuals in a set number of
genomic locations (~1 million markers), and performs
association test between the phenotype (case status or
quantitative trait) and each of the genetic marker (typically

SNPs, single nucleotide polymorphisms).

GWAS
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The genotype of the individuals is represented as a matrix X,
the phenotype is represented as a vector Y. Single marker SNP
association test is performed, leading to a table of SNP-level

results with effect size, standard error of the effect size, and p-

values.

Manhattan Plot
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GWAS significant threshold: 5e-8

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865585/ 19

Manhattan plots are used to visualize GWAS results. Points
above -log(5. 107{-8}) are called GWAS significant.

"a Manhattan plot (—log10[P] genome-wide association plot)
of a genome-wide association study on systolic blood pressure
in 29,136 individuals in Cohorts for Heart and Aging Research
in Genomic Epidemiology (CHARGE). The genome-wide
significance level is set at 5 x 10—8 and plotted as the dotted
line. Any single nucleotide polymorphism (SNP) within a
region of 5 Mb containing a SNP reaching the genome-wide
significance threshold is colored in green. The most significant
SNP in this experiment is colored in red (rs2681492 in the
ATP2B1 gene). The P value is indicated for demonstration. b
Quantile-quantile (QQ) plot of the data shown in the
Manhattan plot. ¢ QQ plot of simulated data showing an early

separation of the observed from the expected, suggesting



population stratification. (a and b adapted from Levy et al.
[22e¢], with permission.)"

Ehret, Genome-Wide Association Studies: Contribution of
Genomics to Understanding Blood Pressure and Essential

Hypertension, 2011,

QQPIot

¢ A Q-Qplotisausefultool to present the GWAS results and check for
potentialissues

X-axis: the expected —log(P-values) “7
under the null hypothesis of no :
association. I.e., the negative log10 of ;
a set of uniformly distributed p-values.

Observed ~logyg(p)

Y-axis: the observed —log(P-values).

Dots above the 45-degree line (upper
right) deserve a closer look.

A QQ plot can also be used to check 0 | 2 3 4 5 5
for population stratification (more Expected -logia(e)
later).

In addition to the Manhattan plot, ggplots is a useful
visualization of GWAS results to detect possible issues with
the analysis. This compares the observed distribution p-values
with the expected distribution under the null hypothesis of no
real relationship between genotype and phenotype. Recall
that under the null hypothesis, p-values are distributed
uniformly. So if we order the p-values under the null, they will

be nearby 1/m, 2/m ,..., 1. This is the expected distribution.

In typical well-behaved GWAS, most points should line up at
the identity line and a few at the right end depart from the
identity line.

LD Allows Detecting Association even if Causal Variant Not Available
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Fig. 5.4 Indirect association: Guilt by association

~ 1 Million SNPs can "tag" most common disease susceptibility loci

What happens when the causal variant is not genotyped?
Doesn't GWAS miss it?

The reason why GWAS works well in identifying causal loci is
LD. If the causal variant is common (say minor allele frequency
> 5%), then they will be correlated with some marker in the
genotyping chip. Top SNPs in GWAS loci, are called 'tag
SNPs' or 'index SNPs'. We cannot know for sure which variant
is causal from the association result but we can be confident
that the causal variant is correlated with the top SNP
(assuming the locus is not a false positive due to various

possible confounding).
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GWAS have been so successful that thousands of them have
been performed since 2005, with discoveries that grow
continuously. As of 2020, more than 70K SNP-trait associations
are reported in the GWAS catalog.

80,000+ SNP/Trait Associations

GWAS Catalog

The NHGRI-EBI Catalog of published genome-wide association studies

Search the catalog Q

Examples: breast carcinoma, rs7329174, Yao, 2g37.1, HBS1L, 6:16000000-25000000

- . .
. Download i Summary statistics = Submit

Download a full copy of the GWAS Catalog in Documentation and access to full summary statistics for  Submit Summary Status to GWAS Catalog
'spreadsheet format as well as current and older GWAS Catalog studies where available.

versions of the GWAS diagram in SVG format.

. . ’
i Documentation o Diagram it Ancestry

Including FAQs, our curation process, training materials, ~ Explore an interactive visualisation of all SNP-trait An introduction to our ancestry curation process.
related resources, a list of abbreviations and API with igr (ps5 x10°

documentation.

WTCCC: First Large Scale GWAS

Vol 447|7 June 2007|doi:10.1038/nature059T nature

ARTICLES

Genome-wide association study of 14,000
cases of seven common diseases and
3,000 shared controls

The Wellcome Trust Case Control Consortium*

There is i ing evidence that g id iation (GWA) studies represent a powerful approach to the

i ification of involved i human diseases. We describe a joint GWA study (using the Affymetrix GeneChip
500K Mapping Array Set) undertaken in the British population, which has examined ~2,000 individuals for each of 7 major
diseases and a shared set of ~3,000 controls. Case-control comparisons identified 24 independent association signals at
P<5x10 ":1in bipolar disorder, 1in coronary artery disease, 9 in Crohn’s disease, 3 in rheumatoid arthritis, 7 in type 1
diabetes and 3in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these
signals reflect genuine susceptibility effects. We observed association at many previously identified loci, and found
compelling evidence that some loci confer risk for more than one of the diseases studied. Across all diseases, we identified a
large number of further signals (including 58 loci with single-point P values between 105 and 5 x 10~ 7) likely to yield
additional susceptibility loci. The importance of appropriately large samples was confirmed by the modest effect sizes

the Wellcome Trust Case Control Consortium's GWAS is a
landmark study of 7 common diseases, the first large scale
GWAS performed.



WTCCC

The Wellcome Trust Case Control Consortium (WTCCC)

GWA studies of 2,000 cases and 3,000 shared controls for 7
diseases

platform: Affymetrix 500K Set
main paper published in 2007
results and summaries freely available

genotype data access granted to qualified investigators

WTCCC: Population Structure
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Here we see the manhattan plot and ggplot from WTCCC for
the association between site (recruitment location) and
genotype. Significant peaks are seen in chromosomes 1, 4, 6,
and 20 indicating that there are significant differences in allele

frequencies in these loci across sites.

The departure from the identity line of most points, is an
indication of population structure. We will get back to this
concept later. Most variants show small frequency differences
between sites, which does not pass GWAS significance (5e-8)

due to their small effects.

QQplots for WTCCC diseases
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These shows the ggplots for all 7 diseases from the WTCCC.
Given a bit of departure from the identity line early on seems
to indicate some population structurehere. At this time,
methods for correcting for population structure were still
under developed. In a later lecture, we will look into methods

to account for population structure.



WTCCC: Manhattan Plots

Bipolar disorder

-i0g,,(7)

Rheumatoid arthritis
Hmﬂnuﬂlﬂumtnm
s 2

=8N ® & 0 © N ® ® 2 = o

. Type 1 diabetes .
i . i Co
dununluuﬂgym

=N ®» s o ® N~ ®© = o2 oo

Type 2 diabetes

Manhatthan plots for the 7 WTCCC diseases.
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We can zoom into the manhattan plot using locus zoom.
These are staples of any GWAS paper at the moment. Variants
in LD tend to have similar association p-values. This is a good
sign. If we find variants that are significant by themselves, this

may be a sign of genotyping issue.
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